

MSc Program: Advancements in Food Sciences and Biotechnologies MSc in Food Safety and Biotechnology

Department of Biotechnology and Food Science Faculty of Sciences University of Burgos

COURSE						CODE
TITLE: Chemometrics and Qualimetrics in food						7441
Tuition Period (semester)	Duration (in months)	Type (Mand/Op)	ECTS Credits	Hours (theoretical)	Hours (practical)	Hours (other activities)
Semester 1	1	Ор	4			

LECTURER IN CHARGE OF COURSE (1)				
Family Name and First Name	Sarabia, Luis Antonio			
University of	Burgos			
Department	Mathematics and Computation	Area	Statistics and Operation Research	
Room no.	Phone (extension)	e-mail		
	+34947258829	lsarabia@ubu.es		

LECTURER (2)			
Family Name and First Name	Ortiz, María de la Cruz		
University of	Burgos		
Department	Chemistry	Area	Analytical Chemistry
Room no.	Phone (extension)	e-mail	
	+34947259571	mcortiz@ubu.es	

LECTURER (3)			
Family Name and	Herrero, Ana		
First Name	,		
University of	Burgos		
Department	Chemistry	Area	Analytical Chemistry
Room no.	Phone (extension)	e-mail	
	+34947259571	aherrero@ubu.es	

LECTURER (4)			
Family Name and First Name	Sánchez, María Sagrario		
University of	Burgos		
Department	Mathematics and Computation	Area	Statistics and Operation Research
Room no.	Phone (extension)	e-mail	
	+34947258829	ssanchez@ubu.es	

3.3.1. SPECIFIC EDUCATIONAL OBJECTIVES

OBJECTIVES:

- 1. To understand the need of methodological approaches to carry experiments, and to operationally handle the tools of experimental design to pose and solve problems (in both scientific research and industrial application)
- 2. To understand the basics of two- and three-way regression methods, and to fit highly predictive models.
- 3. To be aware of the quantitative possibilities of the hyphenated instrumentation coupled with multi-way calibration methods, identifying the situations in which multi-way methods can be useful.
- 4. To handle two or higher order signals for PAT (process analytical technologies)
- 5. To be able to apply and interpret, in the terms of the data being studied, a PCA (principal component analysis) for multivariate data
- 6. To differentiate between discriminating and class-modelling methods, correctly handling the sensitivity and specificity specially associated to typification/authentication/characterization of food products
- 7. To understand and correctly apply analysis of variance (ANOVA) for one or several factors and their interactions.

COURSE PROGRAMME SUMMARY:

THEORETICAL AND PRACTICAL SESSIONS:

- Topic 1: Analysis of variance (ANOVA). One-way and multi-way analysis of variance. Nested models. Application to characterization of food products
- Topic 2. Multivariate techniques for exploration and classification of data: Principal Components Analysis (PCA), Linear Discriminant Analysis (LDA), Soft Independent Models of Class Analogy (SIMCA). Pre-treatment, interpretation, selection of variables, sensitivity and specificity. Application for detecting frauds in food, for typification of liquors, for detection of storage procedures, etc.
- Topic 3: Multivariate regression methods. Multilinear regression methods (MLR), and methods based on latent variables (PLS) extended for multi-way data. Application for instrumental data coming from NIR, MIR, GC-MS, electronic noses, etc.
- Topic 4. Experimental design. Screening designs, factorial designs, response surface methodology for optimising one or several responses (desirability functions).

3.3.2. TEACHING METHOD:

Learning Activities

Learning activities are designed to be as close to the real application as possible. To that end, all the sessions are taught in a computer laboratory, where a topic is introduced to immediately be discussed and practiced with real data sets and professional software.

ECTS credit allocations (Approximate Student workload in hours):

Ec13 create anocations (Approximate Student Workload in nodis).				
		Hours		
	Lectures / Directed discussions	8		
Classroom	Practical Classes (and laboratory notebook compilation)	18		
sro	Seminars and tutorials:	4		
Clas	Essays - Presentations	2		
	Assessment Tests	4		
	On Site - Total Hours:	36		
S	Workload to prepare theoretical and/or practical classes	15		
Resolution of exercise, practical cases and questionnaires				
campus	Workload to prepare exams and/or evaluation tests			
)#O	Workload for writing reports on real problems posed in the classroom	15		
J				
	Off-Campus - Total Hours:	64		
	WORKLOAD - TOTAL HOURS:	100		

3.3.3. ASSESSMENT CRITERIA AND METHOD

Continuous assessment.

After finishing each topic, there is a brief on-site individual test and a problem is posed with real data for the student to write a report about.

3.3.4. LEARNING RESOURCES

Human resources:

The teachers

Material resources:

A computer laboratory room with computers with the necessary software (in English), most of it can also be installed by the student in his/her own computer to work off-campus.

Materials used in the classroom as well as additional references, in English.

3.3.5. CLASSROOM LANGUAGE

Spanish